11. Системный анализ. Системы управления
Прежде чем принимать решение о создании СУ, необходимо рассмотреть все его этапы, независимо от того, с помощью каких технических средств они будут реализованы. Такой алгоритмический анализ управления является основой для принятия решения о создании СУ и степени ее автоматизации. При этом анализе следует обязательно учитывать фактор сложности объекта управления:
n отсутствие математического описания системы;
n стохастичность поведения;
n негативность к управлению;
n не стационарность, дрейф характеристик;
n невоспроизводимость экспериментов (развивающаяся система все время как бы перестает быть сама собой, что предъявляет специальные требования к синтезу и коррекции модели объекта управления).
Особенности сложной системы часто приводят к тому, что цель управления таким объектом в полной мере никогда не достигается, как бы совершенно ни было управление.
Системы управления делятся на два больших класса: системы автоматического управления (САУ) и автоматизированные системы управления (АСУ). В САУ управление объектом или системой осуществляется без непосредственного участия человека автоматическими устройствами. Это замкнутые системы. Основные функции САУ: автоматический контроль и измерения, автоматическая сигнализация, автоматическая защита, автоматические пуск и остановка различных двигателей и приводов, автоматическое поддержание заданных режимов работы оборудования, автоматическое регулирование. В отличие от САУ в АСУ в контур управления включен человек, на которого возлагаются функции принятия наиболее важных
решений и ответственности за принятые решения. Под АСУ обычно понимают человеко-машинные системы, использующие современные экономико-математические методы, средства электронно-вычислительной техники(ЭВТ) и связи, а также новые организационные принципы для отыскания и реализации на практике наиболее эффективного управления объектом(системой).
Этапы управления. Управление сложной системы состоит из этапов, представленных на рисунке.
1. Формирование цепей. Множество целей управления, которое должно реализовать СУ определяется как внешними по отношению к системе, так и внутренними факторами и, в частности, потребностям субъекта А. Сложность формализации учета влияния на цели очевидна. Различают три вида целей: стабилизация- заключается в требовании поддерживать выходы объекта на заданном уровне; ограничение - требует нахождения в заданных границах целевых переменных ; экстремальная цель-сводится к поддержанию в экстремальном состоянии целевых переменных .
2. Определение объекта управления. Этот этап связан с выделением той части среды субъекта, состояние которой он может изменить и тем самым воздействовать на свои потребности. В ряде случаев, когда границы объекта очевидны, проблемы выделения объекта из среды не возникает. Это бывает, когда объект достаточно автономен (самолет, телефонная станция и т. д.). Однако в других случаях связи объекта со средой настолько сильны и разнообразны, что порой очень трудно понять, где кончается объект и начинается среда. Именно это и заставляет вводить специальный этап - определение объекта управления. Объект должен быть в определенном смысле минимальным, т. е. иметь наименьший объем. Это необходимо с целью минимизации трудоемкости его изучения при синтезе модели. При этом существенным ограничением выступает достижимость множества целей управления {Z*} в рамках выделенного для этого ресурса R. Это означает, что для любого состояния среды Х должно найтись управление , с помощью которого можно добиться любой допустимой цели
3. Структурный синтез модели. Последующие три этапа управления сложными системами связаны с решением задачи создания ее модели, которая нужна для синтеза управления U. Только с помощью модели объекта можно построить управление U*, переводящее объект в требуемое (целевое) состояние Z*. Модель F, связывающая входы Х и U с выходом У, определяется структурой SТ и параметрами С={с1 ...,ck}, т. е. представима в виде двойки F={SТ, С). На этом этапе определяется структура SТ, т. е. модель объекта с точностью до значений ее параметров С. Этап структурного синтеза включает: определение внешней структуры модели, декомпозицию модели, определение внутренней структуры элементов модели. Синтез внешней структуры сводится к содержательному определению входов Х и U, выхода У без учета внутренней структуры объекта, т. е. объект рассматривается как некий <черный ящик> с n+q входами и m выходами. Декомпозиция модели заключается в том, чтобы, воспользовавшись априорными сведениями о структуре объекта, упростить задачу синтеза структуры модели. Синтез структуры модели сводится к определению вида оператора F модели объекта с точностью до параметров С. Это значит, что параметры становятся переменными модели, т. е.
(1)
где F - оператор преобразования структуры SТ, параметры которого для удобства внесены в переменные С. Представление оператора преобразования модели в виде (1) можно назвать параметризацией модели, что эквивалентно заданию его структуры. При синтезе структуры моделей объектов управления могут применяться различные подходы - от классических методов теории автоматического управления (ТАУ) до современных методов имитационного моделирования (методы случайного поиска, статистических испытаний и др.), семиотического моделирования с использованием языка бинарных отношений и других методов современной математики, использующих сочетание дополняющих друг друга возможностей аналитических и статистических, семиотических и графических и других формализованных представлений системы.
4. Идентификация параметров модели объекта. Этот этап связан с определением числовых значений параметров С в режиме нормального функционирования объекта. Делается это стандартными приемами идентификации. Для выяснения зависимости выхода объекта от управляемых входов (U необходимо преднамеренно их изменять, т. е. экспериментировать с объектом. Однако сложная система <не любит> эксперименты, нарушающие режим ее нормального функционирования. Поэтому эксперимент, которого нельзя набежать, следует проводить, минимально возмущая объект, но так, чтобы получить при этом максимальную информацию о влиянии варьируемых параметров на выход объекта.
5. Планирование эксперимента. На данном этане главным является синтез плана эксперимента, позволяющего с максимальной эффективностью определить искомые параметры модели объекта управления. Для статического объекта этот план {U представляет собой набор состояний управляемого выхода объекта U={U1 ..., Un}, а для динамического - план-функцию 0<=t<=T, т. е. программу изменения во времени входа объекта. Эксперимент на объекте дает возможность определить реакцию объекта на это воздействие. В статическом случае эта реакция имеет вид Y={y1, ..., yn), где, а в динамическом - У(1)= ^{и(1)}. Полученная информация и является исходной для определения параметров модели F: У=F(U, С), что осуществляется методами идентификации. План эксперимента 0 определяется: структурой SТ модели F, ресурсом планирования R, который образуется выделяемыми на эксперимент средствами, областью планирования, определяющей пределы изменения входа U; критерием планирования, который определяет эффективность плана U.
6. Синтез управления. На этом этапе принимается решение о том, каково должно быть управление (U, чтобы достигнуть заданной цели управления Z* в объекте. Это решение опирается на имеющуюся модель объекта F, заданную цель Z*, полученную информацию о состоянии среды Х и выделенный ресурс управления R, который представляет собой ограничения, накладываемые на управление (U в связи со спецификой объекта и возможностями СУ. Достижение цели Z* возможно соответствующим выбором управления U (состояние среды Х изменяется независимо от нас). Это приводит к экстремальной задаче, решение которой U* является оптимальным управлением. Способы решения задачи (2.4) существенно зависят от структуры модели объекта F. Если объект статический, т. е. F- функция, то получаем задачу математического программирования, если же - динамический, т. е. F- оператор, то решают вариационную задачу.
7. Реализация управления или отработка в объекте оптимального решения U*, полученного на предыдущем этапе. Реализовав управление и убедившись, что цель управления не достигнута, возвращаются к одному из предыдущих этапов. Даже в лучшем случае, когда поставленная цель достигнута, необходимость обращения к предыдущему этапу вызывается изменением состояния среды Х или сменой цели управления U*.
Таким образом, при благоприятном стечении обстоятельств обращаются к этапу синтеза управления, где определяется новое состояние, которое отражает новую ситуацию, сложившуюся в среде. Так функционирует стандартный контур управления простым объектом.
8. Адаптация. Специфика управления сложной системой состоит в том, что благодаря зашумленности и нестационарности информация, полученная на предыдущих этапах, приближенно отражает состояние системы лишь в предыдущие моменты времени. Это и вызывает необходимость коррекции. Коррекция может затрагивать различные этапы.
Простейшая коррекция связана с подстройкой параметров модели С. Такого рода коррекцию называют адаптацией модели, а управление - адаптивным управлением. Если управление U не обеспечивает необходимого разнообразия входа объекта для эффективной коррекции параметров модели, то приходится принимать специальные меры планирования эксперимента путем добавления специальных тестовых сигналов. Такое управление называют дуальным. Однако одной коррекции параметров модели может оказаться недостаточно, если изменилась ее структура. Поэтому время от времени необходима коррекция структуры модели, т. е. приведение ее в соответствие с новой информацией.
Далее коррекция может коснуться самого объекта, точнее, границы разделения объекта и среды. Это бывает необходимо при значительном изменении (эволюции) объекта и окружающей ее среды. И наконец, созданная СУ по ряду причин может не реализовать все множество целей управления, в результате необходима адаптация целей.
Очевидно, что не все из описанных выше восьми этапов управления присутствуют при синтезе СУ. В ряде случаев некоторые из них выпадают. Например, объект управления может быть выделен из среды и тогда нет необходимости в этапе планирования эксперимента, так как модель объекта проста, и все ее параметры можно определить без специально организованного эксперимента.